大数据的入门学习有多条学习路线,可以根据自身的知识结构进行选择,并不是所有的学习路线都是从学Linux操作系统开始,然后是Java、Hadoop、Spark等,学习大数据也可以从数据分析开始。对于职场人来说,学习数据分析的工具如何使用,远比学习Hadoop更加实际。
大数据的核心是数据价值化,只要围绕这个核心所做的一系列数据价值化的操作都是大数据的分内之事,所以大数据学习的出发点比学习内容本身更重要,如果在学习大数据的初期就能建立数据价值化概念,那么对初学者来说是一个莫大的推动力,如何能快速建立数据价值化概念呢?答案就是从数据分析开始。
数据分析并没有那么复杂,即使是没有多少计算机基础的人也可以入门数据分析,并不是所有的数据分析都需要通过机器学习的方式来完成,有很多工具能够方便的完成数据分析,而这些工具本身并不是特别复杂,比如Excel。Excel是一个功能强大的数据分析工具,在没有大数据概念的年代,Excel就在做数据分析的事情,虽然在大数据时代数据分析更加多样化,但是通过Excel能让入门者快速发现“数据之美”,完全可以通过Excel打开学习大数据的大门。
学习Excel可以从基本的函数开始学起,比如sum、count、Vlookup、sumif、countif、find等,这些函数的使用非常方便且功能强大,通过实验很快就能建立起数据分析的概念。Excel基本上能解决不少普通职场人的数据分析场景,几万条的数据分析使用Excel是没有压力的。
下一步学习就涉及到数据库的使用了,虽然目前大数据领域的非结构化数据占据着大部分的比例,但是目前大量的数据分析还是基于结构化数据进行的,所以学习一个数据库产品的使用就变得很有必要了,推荐学习一下Mysql数据库。掌握数据库之后,数据分析的数量就会有显著的提高,几百万条数据都是毫无压力的,相比于Excel来说,数据分析的量一下就得到了质的提高。
感谢关注天善智能,走好数据之路↑↑↑
欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!
可以加: xtechday (长按复制),进入数据爱好者交流群。
先给大家来张大数据体系学习图:
大数据技术想要入门是比较难的,如果是零基础的学员想要入门大数据的还是不太可能事情,最好是找一家靠谱的大数据培训机构进行系统的学习大数据基础,但是大数据的学习也不是谁都可以的,零基础的最好是本科的学历,因为大数据培训学习需要的逻辑思维分析能力比较强,也涉及到一些大学的数学算法,所以学历要求会高些,如果是有Java基础的哪就另当别论了,大数据技术的培训学习,基本都是以Java为基础铺垫的的,有一些Java基础的话,相对来说就容易一些了,如果是直接想学大数据开发的话,Linux基础要有一些,然后就是大数据相关组件的学习和使用,以及他们之间各个有什么作用,数据采集聚合传输处理,各个组件在什么位置,有什么作用等,
一般都是Hadoop+zookeeper+Hive+Flume+Kafka+HBase+Spark+Flink
大数据培训内容:
1、基础部分:JAVA语言 和 LINUX系统。
2、大数据技术部分:HADOOP、HIVE、OOZIE、WEB、FLUME、PYTHON、HBASE、KAFKA、SCALA、SPARK、SPARK调优等,覆盖前沿技术:Hadoop,Spark,Flink,实时数据处理、离线数据处理、机器学习。
大数据入门首先要学习javase,掌握了javase之后,最好再学学javaee,如果不学的话,影响也不是特别大。接下来要学的东西就比较多了,主要是两块,一种是离线计算,以hadoop为主,一种是实时计算,以spark为主,当然大数据不是一两个技术的组合,而是一整套完整的生态系统,所以要学的东西还是很多的,大数据主要解决的是海量数据的存储和计算问题,建议还是把java学好,因为很多大数据的软件都是基于java编写的,所以入门大数据的话,建议先从java入门学习比较好!
零基础开始学习大数据:
1、Linux基础
在大数据领域,使用最多的操作系统就是Linux系列,并且几乎都是分布式集群。学习Linux操作系统、Linux常用命令、Linux常用软件安装、Linux网络、防火墙、Shell编程等
2、Java基础
Java语言基础、HTML、CSS、JavaWeb和数据库等
3、Hadoop
大数据入或者说是学习大数据,首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
如果你就一小白,没有任何开发基础,也没有学过任何开发语言,那就必须先从基础java开始学起(大数据支持很多开发语言,但企业用的最多的还是JAVA),接下来学习数据结构、关系型数据库、linux系统操作,夯实基础之后,再进入大数据的学习。
Java基础学习、数据类型掌握、算法、程序结构、常用类、数据结构、关系型数据库等等,其次就是Linux系统操作学习与熟悉。
掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。
掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。
大数据相比较于Java、Python等编程语言来说,确实是入门比较难的,不过如果想自学也没毛病,只要你了解大数据的学习路线图,跟着学习路线图来学习,不会走偏,那么,想学习还是很容易的哦!
分享给大家一套大数据的学习路线图
学习大数据,也需要一些编程语言要基础,之后还要学习Hadoop、spark等技术栈,在加上一些项目实战,就可以找工作喽!
第一阶段:零基础数据仓库管理
可掌握的核心能力
•掌握企业级ETL平台的kettle
•掌握BI的可视化平台Superset
学习大数据技术 分这么几个阶段
java基础一定要学,因为大数据底层的编程语言就是java,还是在大数据一些应用功能也需要java开发。
2学一门数据库 oracle或mysql ,我建议最好是mysql 因为后期大数据技术hive语法和mysql很像。
3 linux命令 一定要熟练掌握,因为大数据是跑在linux操作系统的。
4 学习一下hdfs mapreduce 原理
大数据行业如今如此火爆,带来的市场效应就是很多人开始通过学习的方式进入大数据行业,但是,对于零基础的来说想要进入大数据行业发展怎么入门学习大数据是一件需要着重考虑的事情。大数据是一门比较复杂的课程,学习是需要有一个好的学习计划会更好。
目前的大数据相关的一些使用到的组件都是使用的Java做为底层语言开发的,所以,这里也建议零基础的学员可以从家基础进行入门学习比较好,当然,有其它编程语言也是可以的。
现在一般的大数据培训机构的大数据入门课程,都是从Java编程语言开始进行学习的,但是这里大家一定要认清一个问题,Java编程语言并不是真正的大数据技术只是大数据课程需要掌握的一小部分基础内容,如果,是选择大数据培训机构进行学习的,那么,在选择培训机构时,大数据培训的课程很大的一部分都是编程语言或者是没有相关编程语言的话就要留意了,这是不是靠谱的大数据培训课程就要打一个问号了。
在题主的问题之前看了一下其他楼主的,突然感觉要入门大数据要学习的内容好多好杂,对于一个普通人来说可能至少要话三四年的时间全身心投入才可能入门,不知题主是否也有同样的疑问!难道学习大数据真的是从入门到放弃么?其实我觉得不是。
首先在学习大数据之前应该了解什么是大数据,大数据这个概念又是如何产生的呢?数据这个概念是在有计算机时便诞生了,而现在无非就是加了一个“大”,所谓大即在随着互联网越来越发达,网络传输效率从2G走到现在的5G,从原先的互联网走向现在的物联网时代,每个人每个物产生的数据爆炸式产生,传统的数据库(如:oracle、db2等)已无法满足现有数据的存储开销与计算效率,故而产生了现在的大数据平台(如:MPP架构的华为高斯DB和Hadoop生态)来满足对不断增长的数据存储与计算,也就是说大数据就是海量数据存储与计算,题主可以选择一种架构的大数据平台如针对性学习。
在了解了什么是大数据后题主可以选择一种架构的大数据平台进行学习,比如现在最流行的hadoop平台。
根据题主的问题可以了解到题主应该是想快速入门,那怎么才能快速入门呢?我觉得这才是题主最关心的问题吧!
所谓欲速则不达,门其实就在眼前只是不知如何去敲。那该怎么敲呢?首先得了解大数据平台架构分哪些模块吧!(如hadoop平台基础模块分hdfs、yarn、mapreduce),其次得了解每个模块得功能是什么吧,(如:hdfs是分布式文件存储系统,是用来存储数据的),再就是得明白给个模块之间的联系以及各个模块得实现原理了。