多表连接查询和多次单表查询哪个效率高?为什么?

1

如果数据量小的表,这样的设计意义不大,而且当然是单表速度快。若在大数据量情况下,设计非常有意义。在多表连接中注意数据的条目和外健,避免出行大量冗余数据导致性能下降。下面我以Oracle讲讲数据查询的整个过程技术。

由于数据分布到数据块,在大量数据设计中可以将数据存储于多个数据块,在高并发进程的随机访问的情况下,能有效减少块冲突 同样的数据需要更多的数据块来存储,由于数据块的块头元信息大小固定,所以需要更多的空间来存储块头元信息。行长度过大容易导致行连接,从而导致Oracle获取数据块的效率降低 ,在行长度固定的前提下,单块能够存储更多的数据行,也就意味着Oracle一次I/O能读取更多的数据行。适合连续顺序读或者存放大对象数据(如LOB数据) 由于大数据块可以存放更多的索引叶节点信息,容易引起争用,所以大数据块不适合存放索引叶节点信息。

大量数据表的数据库参数设置DB_FILE_MULTIBLOCK_READ_COUNT表示Oracle一次顺序I/O读操作最多能读取的数据块块数。该参数的默认值随操作系统的不同而不同。在全表扫描或者索引快速扫描比较多的系统中(如DSS系统),建议将该值设置得较大。但是DB_FILE_MULTIBLOCK_READ_COUNT参数受操作最大单次I/O大小的限制,大多数操作系统单次读操作的大小不能超过1MB,这也就意味着在8KB数据块大小的情况下,该参数最大值为128。值得一提的是,该参数的大小还会影响Oracle CBO对执行计划的评估,如果设成较大值,Oracle的执行计划倾向于全表扫描。当该参数设置为0或者保持默认时,CBO假设全表扫描时最多能连续读取8个数据块。从Oracle 11R2开始,DB_FILE_MULTIBLOCK_READ_COUNT的取值算法如下:

db_file_multiblock_read_count = min(1048576/db_block_size , db_cache_size/

(sessions * db_block_size))

2

先贴俩图镇镇场。

引言

对于内连接,使用单个查询是有意义的,因为你只获得匹配的行。

对于左连接,多个查询要好得多。

3

是做表连接查询还是做分解查询要具体情况具体分析。

如果数据库的结构合理,索引设计得当,表连接的效率要高于分解查询。比如,在有外键的时候,数据库可以为外键建表并建立索引从而提升多个表连接查询的效率。另外,多表连接查询不需要把数据传输到应用程序中,直接在数据库端执行,这在很大程度上提升了效率。

但是多表连接也有一些缺点。多表连接对表结构的依存度很高,只要表结构出现变更就会同时对数据库检索和应用处理两个部分产生较大影响。另外,多表连接的兼容性不好,数据库不同SQL文也多少有些差异。而且采用分散数据库的时候,实现多表连接即麻烦又没有什么好处。因此,一些大型系统或者是支持多种类数据库的系统一般不会使用多表连接,而倾向于采用分解查询。

4

这个得看情况,一般数据不大的情况下多表连接查询和多次单表查询的效率差不多。如果数据量足够大,那肯定是多次单表查询的效率更高。在很多大的公司里面,都会禁用多表连接查询,原因就是一旦数据量足够大的时候多表连接查询效率会很慢,而且不利于分库分表的查询优化。那么看一下下面这个例子。

两种查询方式的比较

我这里有一个数据库,我们拿里面的客户表和地区表做两种查询的对比。用户表数据是31万条,地区表3511条。

1. 使用连表查询成都市的客户总数

2.使用多次单表查询客户总数

可以看到,查询出来的结果都是一样,但是第一种的连表查询用了0.67秒中,而第二种多次单表查询一共用时0.14秒。这个对比已经是很明显了吧。

5

做java的,在orm框架下,分解查询是最符合面向对象操作的,挺支持分解查询的(拙见)

6

先说结论:不一定。

多表查询效率低的时候,可以考虑拆解sql成多个小的sql,至于效率是否一定会提高,这个还不一定,具体问题具体问题。当多表查询效率低的时候,拆解成单个小sql,这只是一个可能的思路,起不起作用,不一定。

sql是一个很复杂的东西,sql引擎会分析执行计划,并可能按照他认为最优的执行计划执行sql,但他认为的也不一定是正确的。不同的sql执行计划不一样,所以很难断定sql拆解或者合并的效率。

说了这么多,那到底是多表联合查询还是拆解呢?有没有一个原则? 有!如果你确定你的单个sql的执行效率比较快,当然可以写多个单个sql。当然了,具备这个能力需要你对数据库足够了解,比如什么时候走索引,什么时候nested loop等等。如果你现在的多表联合查询比较慢,你需要找出来慢的原因,并分析拆解后的sql的执行计划,看是否避免了多表联合查询的效率问题。


7

单纯从效率来讲,join的表不太多时,join效率比较高。但是占用的主要是数据库服务器的资源。数据库资源又是个瓶颈,不易横向扩展。所以在数据量大的时候,我们会采用单表查询,把循环和匹配等大量工作移到应用服务器上。应用服务器容易扩展,对并发支持更好。

当数据量大到千万级以上,就建议尽可能减少join,鼓励使用单表查询。查询优化比较容易。这时候使用join的一个大型查询就可能花很久,对其他查询造成阻塞,导致服务不可用。

当考虑单表查询后,就会衍生一系列的策略,比如冷热数据分离,将热数据和历史数据分离,大幅降低数据量级以提高热数据查询性能,并可以使用内存缓存。这样又促使你考虑引入微服务架构。

总结,数据量小,查询并发少,那么使用join的性能是可控的,开发成本低。当数量级上升到千万级且不断增加,尽早考虑向单表查询切换,否则可能有性能下降会导致系统奔溃。而且性能下降不是线性的,会陡降。

8

单次肯定是多表连接查询的效率高,但多次单表查询的吞吐量高,而且容易优化,例如分库分表,使用缓存减少DB访问次数等等,所以在大数据量高并发场景通常使用多次单表查询的方式。另外,不管是单表还是多表连接查询,SQL的执行时间和数据量、并发量都有很大关系,和扫描的数据行数也很有关系。如果一条SQL,平时执行一次要2秒,10个并发时,系统可能一点问题都没有,1000个并发时,数据库可能就被拖死了。我们组之前碰到过好几次这种问题,一张只有几万条数据的表,因为忘记加索引,平时执行只有几百毫秒,高峰期直接飙到几十秒,DB差点被拖垮。

关于作者: 网站小编

码农网专注IT技术教程资源分享平台,学习资源下载网站,58码农网包含计算机技术、网站程序源码下载、编程技术论坛、互联网资源下载等产品服务,提供原创、优质、完整内容的专业码农交流分享平台。

热门文章