当前正处在大数据时代背景下,大数据技术目前也正处在落地应用的初期,未来大数据的发展空间还是比较大的,所以学习大数据相关技术是个不错的选择。
大数据编程语言的选择要根据具体的工作岗位来进行,目前大数据领域的工作岗位包括大数据平台研发、大数据应用开发、大数据分析和大数据运维,除了大数据平台研发之外,其他岗位的人才需求量还是比较大的,尤其是大数据分析岗位。
大数据应用开发岗位比较常见的编程语言包括Java、Python、Scala等,Java和Python是Hadoop平台比较常见的编程语言,而在Spark平台下,往往更多的选择是Scala语言。从应用的普遍性和功能性来说,在Hadoop平台下比较推荐采用Java语言,在Spark平台下比较推荐采用Scala语言。Java语言的生态比较健全,而且性能稳定,所以采用Java语言会降低一定的开发风险。
大数据分析岗位比较常见的编程语言包括Python、R、Julia、Matlab、GO等语言,其中Python和R语言是比较常见的选择。Python语言随着大数据的发展,在近几年上升势头非常明显,在最新的TIOBE语言排行榜上已经排到了第三位,这是一个非常不错的成绩。Python语言语法简单、扩展性强、调整方便,而且Python语言自身具备强大的库支持(Numpy、Scipy、Matplotlib等),在进行数据分析时非常方便。
另外,Python语言也是大数据运维岗位比较常见的选择,从这个角度来看,Python语言是大数据从业人员应该掌握的重点语言。
你有一个大数据项目,你知道问题领域(problem domain),也知道使用什么基础设施,甚至可能已决定使用哪种框架来处理所有这些数据,但是有一个决定迟迟未能做出:我该选择哪种语言?(或者可能更有针对性的问题是,我该迫使我的所有开发人员和数据科学家非要用哪种语言?)这个问题不会推迟太久,迟早要定夺。
当然,没有什么阻止得了你使用其他机制(比如XSLT转换)来处理大数据工作。但通常来说,如今大数据方面有三种语言可以选择:R、Python和Scala,外加一直以来屹立于企业界的Java。那么,你该选择哪种语言?为何要选择它,或者说何时选择它?
下面简要介绍了每种语言,帮助你做出合理的决定。
R
R经常被称为是“统计人员为统计人员开发的一种语言”。如果你需要深奥的统计模型用于计算,可能会在CRAN上找到它――你知道,CRAN叫综合R档案网络(Comprehensive R Archive Network)并非无缘无故。说到用于分析和标绘,没有什么比得过ggplot2。而如果你想利用比你机器提供的功能还强大的功能,那可以使用SparkR绑定,在R上运行Spark。
选择大数据项目编程语言的最重要因素是目究竟项目偏向于什么。如果是更加侧重于分析数据,构建分析并测试机器学习模型,那么更偏向于数据科学语言。如果是希望构建大数据或物联网(IoT)应用程序,那么选择又需要考虑其他因素.
在数据科学探索和开发阶段,今天最流行的语言无疑是Python。Python流行的一个重要原因是可用于帮助数据科学家探索大数据集的大量工具和库。另外Python本身就是一门通用语言,实用型强.
另一种流行的数据科学语言是R,长期以来一直是数学家,统计学家和科学家的最爱。MATLAB也广泛用于大数据的探索和发现阶段。另外如果不了解SQL,也无法在数据科学方面走得太远,这仍然是一种非常有用的语言。
在开发生产分析和物联网应用程序时,通常会选择不同的语言集。虽然可能在项目的实验阶段选择Python或R,但实施通常会重写应用程序并使用完全不同的语言重新实现机器学习算法。
建议先学好一种编译型语言,比如java,在学一到几种解释型语言,比如php python,期间要多学习数据库和数据仓库,多练习多实践,就可以跟上步伐了
编程语言方面,Java是当今的顶峰。编程语言方面最有潜力的是python,建议从这方面深入。
润乾集算器,提供了大量集合运算函数,往往几行代码就能搞定一个大数据的计算处理。
被评为2018中国最佳大数据计算引擎!
自己在用R语言我就来说说它对大数据处理的感觉。
平常我们用的最多的就是Excel来处理数据,当然你就会发现它功能是很丰富但是就是只能处理小的数据量。而对于大数据来说它就有点力不从心,然后R语言可以弥补这个,R对于数据量大一点的处理起来很有优势
R语言里面有各种包他可以帮助我们处理数据、分析数据、建立模型我们也可以自己写函数处理自己想解决的问题。
R语言还有ggplot2这个数据可视化的神奇,他能用图表