小弟是深度学习方面新手
最近想试试图像辨识但遇到了难题
我想辨认的三种东西分别是lad, lcx, rca
这三个类型的资料夹下分别又有100个资料夹里面是5张jpg档
train ->floder
-----lad ->floder
----------1 ->floder
---------------v1 v2 v3 v4 v5 ->jpg
----------2 ->floder
---------------v1 v2 v3 v4 v5 ->jpg
----------3 ->floder
---------------v1 v2 v3 v4 v5 ->jpg
-----lcx ->floder
----------1 ->floder
---------------v1 v2 v3 v4 v5 ->jpg
----------2->floder
---------------v1 v2 v3 v4 v5 ->jpg
----------3->floder
---------------v1 v2 v3 v4 v5 ->jpg
test 和 vaildation 资料夹也是同样结构
一般的文章或书籍所教之方法的资料结构都是
train ->floder
-----lad ->floder
----------1->jpg
----------2->jpg
----------3->jpg
----------4->jpg
lcx ->floder
----------1->jpg
----------2->jpg
----------3->jpg
----------4->jpg
5张图片放置在"rcx", "lad", "lcx"资料夹底下的"1", "2", "3", "4", "5" 资料夹
请问各位前备我该用哪种语法让模型知道训练的图片在资料夹下
我用的是python的tensorflow
程式码如下:
labels = ['lad', 'rca', 'lcx']def get_data(data_dir): data = [] for label in labels: path = os.path.join(data_dir, label) class_num = labels.index(label) dirs = os.listdir(path) for file in dirs: pic_dir=os.path.join(path,file) for i in os.listdir(pic_dir): image_dir=os.path.join(pic_dir,i) img1 = cv2.imread(os.path.join(path, image_dir)) img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2BGR) data.append([img1, class_num]) return np.array(data) train = get_data('C:/') test = get_data('C:/')x_train = []y_train = []x_val = []y_val = []for feature, label in train: x_train.append(feature) y_train.append(label) for feature, label in test: x_val.append(feature) y_val.append(label) x_train = np.array(x_train) / 255x_val = np.array(x_val) / 255 x_train.reshape(-1, img_size, img_size, 1)y_train = np.array(y_train) x_val.reshape(-1, img_size, img_size, 1)y_val = np.array(y_val)
感谢大家的指教!
每个留言我都会认真看!!