使用读档方式用python实作PLA
Lab2作业需求:
基本上和Lab大同小异,唯一要改的地方就是读取档案的部分:
from matplotlib import markersimport numpy as npimport matplotlib.pyplot as plt# 分割资料def getDataSet(filename): dataSet = open(filename, 'r') dataSet = dataSet.readlines() num = len(dataSet) x1 = np.zeros((num, 1)) x2 = np.zeros((num, 1)) y = np.zeros((num, 1)) for i in range(num): data = dataSet[i].strip().split(",") x1[i] = float(data[0]) x2[i] = float(data[1]) y[i] = float(data[2]) return num, x1, x2, ydef pla_with_data(num, x1, x2, y): # 初始值 >> w=[0,0] b=0 w = np.zeros((2, 1)) b = 0 flag = 1 for k in range(100): # 限制无穷迴圈 >> 次数设定100次 flag = 1 for i in range(num): # 看每个点是否为正确 dot = x1[i]*int(w[0])+x2[i]*int(w[1]) # 将一个点的座标带入 跟w作内积 if sign(dot, b) != y[i]: # 与参考资料y不相符 >> 线划分错误 flag = 0 w[0] += y[i] * x1[i] # 矫正 w = w + y*x w[1] += y[i] * x2[i] b = b + y[i] # 矫正 b = b + y #print(w, b) else: continue # 与参考资料y相符 >> 下一个点 if flag == 1: break # 全部的点都与参考资料y相符 >> 划分完成 return w, bdef sign(dot, b): if dot+b >= 0: return 1 else: return -1# 画图def draw(x1, x2, y, prex1, prex2): # 製作figure fig = plt.figure() # 图表的设定 ax = fig.add_subplot(1, 1, 1) # 散布图 for i in range(num): if y[i] == 1: ax.scatter(x1[i], x2[i], color='red') else: ax.scatter(x1[i], x2[i], color='black') for i in range(prenum): ax.scatter(prex1[i], prex2[i], color='green', marker="x") plt.show()# 先读取训练资料filename = r"Iris_training.txt"num, x1, x2, y = getDataSet(filename)# 把资料带入模型w, b = pla_with_data(num, x1, x2, y)# 再读取要预测的资料filename = r"Iris_test.txt"prenum, prex1, prex2, prey = getDataSet(filename)# 输出预测结果predict = 0for i in range(prenum): pre = np.sign((prex1[i]*w[0]+prex2[i]*w[1])+b) if pre != prey[i]: predict += 1 print('predict example %s = %s' % (i+1, pre))print('error = %s / %s ' % (predict, prenum))print('w1 = %s , w2 = %s , b = %s' % (w[0], w[1], b))draw(x1, x2, y, prex1, prex2)
画图真的是弱项...另一半是因为偷懒 :)
结果图:
github连结:
https://github.com/Minimindy/PLA-numpy-only-/tree/main