上午: 网站设计与网页工程技术
# 连接资料库import sqlite3import numpy as npcon = sqlite3.connect('db.sqlite3')cur = con.cursor()
data = cur.execute('SELECT * FROM stock_stock_price WHERE id <= 50')alist = cur.fetchall()data_1 = np.array(alist)x = data_1[:,4].astype('float64')
cur.execute('SELECT * FROM stock_stock_price WHERE id > 1 AND id <=51')alist_y = cur.fetchall()data_2 = np.array(alist_y)y = data_2[:,4].astype('float64')y
from sklearn.pipeline import make_pipelinefrom sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeaturesdef PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs))
# 训练模型PLR_model = PolynomialRegression(degree=100).fit(x[:,np.newaxis],y)ypred = PLR_model.predict(x[:,np.newaxis])
# 资料视觉化plt.plot(x,y,'o')plt.plot(x,ypred)
这们课程还有些部分没有上完,老师之后会採用录影的方式提供学员之后补齐。
下午: 专题讨论
今日各组以论文形式报告专题,并给予建议与改善方法。