PostgreSQL 有 Array, 让我们在处理资料或是分析资料时,十分地便利.情境:某电商有10万种商品,上个月有一千万笔销售纪录,每笔销售有1~10种商品.我们使用 Array,可以很方便的建立以下的 table.create table it201012a ( id int generated always as identity, items int[] not null);产生测试资料的函数create or replace function ranitemarr()returns int[]as $$ select array_agg(ceil(random() * 100000)::int) from generate_series(1, ceil(random() * 10)::int);$$language sql;insert into it201012a(items)select ranitemarr() from generate_series(1,1e7);commit;接下来我们可以开发一个array内元素所有可能组合的函数.在 stackoverflow 中 已经有一个这样的範例https://stackoverflow.com/questions/30515990/postgresql-find-all-possible-combinations-permutations-in-recursive-query递迴啊~~~ 递迴的方式,虽然已经有开发完成,但是颇佔篇幅,今天先不介绍.Python 的 itertools 里面也有 combinations 可以利用https://docs.python.org/zh-cn/3/library/itertools.html#itertools.combinations我们将利用 combinations 来开发三个PlPython函数.create or replace function pyarrcombin (lst int[])returns setof int[]as $$ from itertools import combinations return [list(t) for r in range(1, len(lst)+1) for t in combinations(lst,r)]$$ language plpython3u;create or replace function pyarrcombin (lst int[], n int)returns setof int[]as $$ from itertools import combinations return [list(t) for t in combinations(lst,n)]$$ language plpython3u;create or replace function pyarrcombin (lst int[], n int, f int)returns setof int[]as $$ from itertools import combinations return [list(t) for t in combinations(lst,n) if f in t]$$ language plpython3u;-------看一下使用案例产生全部的组合select pyarrcombin(array[1,2,3]);+-------------+| pyarrcombin |+-------------+| {1} || {2} || {3} || {1,2} || {1,3} || {2,3} || {1,2,3} |+-------------+(7 rows)产生符合指定的数目元素select pyarrcombin(array[1,2,3],2);+-------------+| pyarrcombin |+-------------+| {1,2} || {1,3} || {2,3} |+-------------+(3 rows)产生符合指定的数目元素,且包含指定元素select pyarrcombin(array[1,2,3],2,3);+-------------+| pyarrcombin |+-------------+| {1,3} || {2,3} |+-------------+(2 rows)--------使用产生组合的函数,来看应用.先来帮测试table 建立 index 吧.create index on it201012a using gin(items);analyze it201012a;commit;-------select * from it201012a fetch first 3 rows only;+----+---------------------------------------------------------------+| id | items |+----+---------------------------------------------------------------+| 1 | {77367,65384,94905,83558,89606,66216,13380,89461,73248,65171} || 2 | {30193,61007,48154} || 3 | {42786} |+----+---------------------------------------------------------------+(3 rows)假设以 61007 ,查询有哪些纪录有包含.select * from it201012a where items @> array[61007];+---------+---------------------------------------------------------------+| id | items |+---------+---------------------------------------------------------------+| 2 | {30193,61007,48154} || 2706 | {61007,39231,7845,41394,22950,57433,41700,84929,90262} |....| 9997914 | {61007} |+---------+---------------------------------------------------------------+(537 rows)查询与 61007 搭配的品项,出现次数依序降幂. select count(*) , pyarrcombin(items, 2, 61007) from it201012a where items @> array[61007] group by 2 order by 1 desc;+-------+---------------+| count | pyarrcombin |+-------+---------------+| 2 | {61007,9629} || 2 | {42904,61007} || 2 | {61007,80684} || 2 | {20941,61007} || 2 | {61007,10792} || 2 | {61007,70903} |...| 1 | {1439,61007} |+-------+---------------+(3245 rows)Time: 62.261 ms可见得 61007 与 其他品项一起购买的情况是有不少,但没有特别明显的组合.----接下来找 61007 的哼哈二将select count(*) , pyarrcombin(items, 3, 61007) from it201012a where items @> array[61007] group by 2 order by 1 desc;+-------+---------------------+| count | pyarrcombin |+-------+---------------------+| 1 | {97,15451,61007} || 1 | {97,16040,61007} |...| 1 | {99987,61007,68303} |+-------+---------------------+(9911 rows)Time: 77.938 ms速度都还不错.---------销量前三名的品项select a.item , count(*) from (select unnest(items) as item from it201012a) a group by a.item order by 2 desc fetch first 3 rows only;+-------+-------+| item | count |+-------+-------+| 78311 | 662 || 13034 | 652 || 42643 | 646 |+-------+-------+(3 rows)以78311 来查询select count(*) , pyarrcombin(items, 2, 78311) from it201012a where items @> array[78311] group by 2 order by 1 desc;+-------+---------------+| count | pyarrcombin |+-------+---------------+| 3 | {76373,78311} || 2 | {4643,78311} || 2 | {65731,78311} || 2 | {49658,78311} || 2 | {87291,78311} |...| 1 | {1429,78311} |+-------+---------------+(4082 rows)Time: 32.002 ms-----------因为产生的测试资料为乱数产生,会与现实的可能有较高相关性的资料不同.今天介绍的应用方式,不只可以用在电商,应用的範围很广,希望能带给大家在资料分析时有新的方式可以应用.