Day38 参加职训(机器学习与资料分析工程师培训班),RNN

早上前2堂: RNN

X_Data = ['good', 'bad', 'worse', 'so good']y = [1.0, 0.0, 0.0, 1.0]
count = 0Encoding = dict()for words in X_Data:    for char in words:        if char not in Encoding.keys():            Encoding[char] = count+1            count = count+1
X_squence = []for words in X_Data:    temp = []    for char in words:        temp.append(Encoding[char])    X_squence.append(temp)
# 补数字将长度改成一样from tensorflow.keras.preprocessing.sequence import pad_sequencesX = pad_sequences(X_squence, maxlen=8, padding='post', value=0)import numpy as npy = np.array(y)
# 建构网路from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Embedding, SimpleRNN, DenseRNN_Model = Sequential()RNN_Model.add(Embedding(input_dim=11, output_dim=11, input_length=8))RNN_Model.add(SimpleRNN(30))RNN_Model.add(Dense(2))
# 训练模型from tensorflow.keras.optimizers import Adamfrom tensorflow.keras.losses import SparseCategoricalCrossentropyadam_op = Adam(learning_rate=0.001)loss_op = SparseCategoricalCrossentropy()RNN_Model.compile(optimizer=adam_op, loss=loss_op, metrics=['acc'])RNN_Model.fit(X, y, epochs=30, batch_size=2)
# 预测np.argmax(RNN_Model.predict(X), axis=-1)

http://img2.58codes.com/2024/20139039hEmKZTKaZu.png

y

http://img2.58codes.com/2024/20139039cMqJQxW1Bm.png

早上后2堂:

讲解一些演算法,ex:爬山演算法,运用程式让同学了解运作原理。

下午结业式 + 就业媒合


关于作者: 网站小编

码农网专注IT技术教程资源分享平台,学习资源下载网站,58码农网包含计算机技术、网站程序源码下载、编程技术论坛、互联网资源下载等产品服务,提供原创、优质、完整内容的专业码农交流分享平台。

热门文章